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Abstract  
In this paper we presented the Prometheus methodology for building agent-
based software systems. Our objectives in presenting Prometheus as a 
special purpose methodology were to have a process with associated 
deliverables which could be used by industry practitioners and 
undergraduate students without a previous background in agents’ studies. 
Prometheus as an agent oriented methodology was developed based on the 
principles of Knowledge based engineering methodology. Prometheus 
comprised of three phases: system specification, architectural design, and 
detailed design. This special purpose methodology was used by industrial 
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practitioners, taught at workshops at a number of conferences, and has also 
been taught to undergraduate and postgraduate students, as well as used in 
student projects.  

 
Keywords: Agents, Software Engineering, Methodologies. 
 
 
1.0 INTRODUCTION 
  
Prometheus is a methodology for developing agent-oriented software 
systems. Our goal in developing Prometheus was to have a process 
with associated deliverables which could be used by industry 
practitioners and undergraduate students to develop intelligent agents 
systems, without necessarily a previous background in agent’s 
studies. Prometheus as a special purpose methodology covers only 
three phases of software development stages as applied to agent 
systems development. 

The Prometheus methodology includes three phases: 
 
The system specification phase: This focuses on (i) identifying the 
system’s interface, which consists of percepts (information from the 
environment), and actions; and (ii) deter-mining the system’s goals, 
functionalities, and use case scenarios, along with any important 
shared data. The outputs from this phase are set of functionality 
descriptions, percept and action descriptions, system goals, and use 
case scenarios (Bresciani et al., 2002).  
 
The architectural design phase: This uses the outputs from the 
previous phase to determine which agents the system will contain, 
how they will inter-act, and what significant events occur in the 
environment. The outputs of this phase are system overview diagram, 
agent descriptions, agent interaction protocols and a list of significant 
events and messages between agents (Winikoff et al., 2001). 

The three aspects that are developed during architectural design are: 
 

1 Deciding on the agent types used in the application. Agent types 
are formed by grouping a number of functionalities together. 
Diagrams which we use to assist in the analysis are data 
coupling diagrams and agent acquaintance diagrams (Winikoff 
et al., 2001). 
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2. Designing the overall system structure (with a system overview 

diagram along with descriptors) (Winikoff et al., 2001). 
 

3. Describing the interactions between agents using interaction 
diagrams (developed from scenarios) and interaction protocols 
(developed from interaction diagrams) (Winikoff et al., 2001).  

 
The detailed design phase: This looks at the internal structure of 
each agent and how it will accomplish its tasks within the overall 
system. The outcomes of this phase are detailed diagrams showing the 
internal functionality of each agent and its capabilities, process 
diagrams that show the internal processing of the agent, as well as 
descriptions of data structures used by the agent, plans and subtasks 
and the details of plan triggers (Bresciani et al., 2002).   
Figure 1.1 indicates the main design artifacts that arise from each of 
these phases as well as some of the intermediary items and 
relationships between items. The figure shows the models and 
dependencies, but does not show the process (although it does imply 
it).  
 
The development (and revision) of the various models depicted in 
Figure 1.1 is intended to proceed in an iterative fashion (similar to the 
Rational Unified Process) where in each iteration the focus of the work 
gradually shifts further down towards implementation. However, it is 
expected that most iterations will not be exclusively concerned with a 
single phase such that many iterations will involve revision of 
previously developed models(Winikoff et al., 2001)..  

Furthermore, Figure 1.1 is divided horizontally and vertically. The 
three horizontal regions form the three phases of the methodology 
discussed above. The left-most region (consisting of scenarios, 
interaction diagrams, interaction protocols and process diagrams) 
deals with descriptions of the dynamic behaviour of the system. The 
middle vertical region (data coupling, acquaintance, system 
overview, agent overview and capability overview) deal with 
overviews of the system while the remaining models (the right 
region) give detailed descriptions for each entity in the system. Both 
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the middle and right region deal with the static structure of the system 
(Winikoff et al., 2001). 

 
 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1.Overview of the Prometheus Methodology (Winikoff et al., 
2001). 
 
2.0 Literature Review. 
 
Prometheus, like any other methodology, defines a number of system 
models and notations that are used to describe these models. We 
describe structural overviews at various levels (system, agent, 
capability) with a single diagram type. In addition, diagrams are used 
for showing data coupling and agent acquaintance relationships. 
Dynamic behaviour is currently described with existing models from 
UML (Unified Modeling Language) and AUML (Agent UML) 
(Winikoff et al., 2001). 
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In addition to graphical notations, we use structured textual 
descriptors (i.e., forms) for describing individual system entities (e.g., 
agents, functionalities, plans, etc.). We also maintain a data dictionary 
which is important in ensuring consistent use of names.  
It is important to note that Prometheus is a general purpose 
methodology. In particular, most of the methodology (specification 
and architectural design) does not assume particular agent architecture. 
Although the detailed design phase does target a particular family of 
agent architectures (namely those that achieve goals using a library of 
plans), yet, did not make Prometheus special- purpose. Any 
methodology that addresses implementation needs to have a target 
platform. For example, Tropos (Bresciani et al., 2002) also targets 
BDI-like systems, whereas Gaia avoids the issue by not addressing 
implementation.   
System specification consists of three main activities: determining the 
system’s interface to the environment, determining the system’s goals 
and functionalities, and determining scenarios which capture the 
usage of the system.  
 
Since agents are situated, one of the key things to be captured in the 
development process is how the agents interact with their 
environment. For instance, following standard terminology as put 
forward by Russell and Norvig, (1995) we recall incoming 
information from the environment percepts and agents as a means of 
affecting the environment actions. As discussed in Winikoff et al.,  
(2001) the raw data from percepts may need to be processed in order 
to obtain an event that are of significance event for the agent system. 
Prometheus prompts the developer to consider such issues such as a 
video frame from a camera on a soccer playing robot which may need 
processing to extract the symbolic objects, including ball, goal and 
players, as well as further processing to determine whether anything 
significant has actually happened, which may include a ball having 
moved since a previous frame, or a ball not appearing where one was 
expected (Winikoff et al., 2001)..  

Furthermore, determining the system’s goals and functionalities is 
done by iterating over the following steps (Russell and Norvig, 
1995): 
 

Identify and refine system goals – main and subsidiary;   
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Group goals into functionalities;   
Prepare functionality descriptors;   
Define use case scenarios (and variations); and   
Check that all goals are covered by scenarios.   

An initial set of goals is identified from the initial requirements. 
These are refined and elaborated into a hierarchy of goals by asking 
how goals will be achieved, and why goals are being achieved (van 
Lamsweerde, 2001). For example, designing an online book store, we 
might have a high-level goal fully online system. This goal might 
have associated with the subgoals find books online, pay online and 
order online.  

Functionalities are limited “chunks” of system behaviour that 
describe in a broad sense what the system needs to be able to do. We 
derive functionalities by grouping related goals. For example, given 
the goals above, we might also have another high-level goal of 
purchase books with subgoals, find books, place order, make 
payment, and arrange delivery. Pay online and make payment are 
clearly closely related if not identical goals, and are therefore grouped 
together in a single functionality (Russell and Norvig, 1995).  

Functionality descriptors capture the name and description of each 
functionality as well as what events activate it; what goals it achieves; 
what actions it performs; what percepts it receives; what messages it 
sends/receives, and what data it uses and produces.  

Use case scenarios are complementary to goals in that they show 
how processes are composed within the system. In developing goals, 
we are typically building up scenarios of how these goals will be part 
of various processes within the system. Scenarios enable us to specify 
some of this structure, which in turn may help to identify missing 
goals.  

Furthermore, use case scenarios are also based on ideas from 
object oriented design but are more structured. This structure allows 
for automated cross checking, and automatic production of partial 
information for later design artifacts (e.g., protocols) (Winikoff et al., 
2001).  

The core of the use case scenario is the sequence of steps 
describing a particular example of the system in operation. Each step 
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can optionally have data read and data written noted as well as the 
functionality that performs that step. Each step can be a GOAL, 
ACTION, PERCEPT or SCENARIO, as well as OTHER allowing for 
additional step types, even though these cannot be used in automated 
processing. The following example illustrates the steps of a use case 
scenario in Prometheus (Winikoff et al., 2001). 

 
 

 
Query Late Books Scenario  
Trigger: User enquiry  
 GOAL: Determine delivery status  
 GOAL: Log delivery problem  
 ACTION: Request delivery tracking  
 GOAL: Inform customer  
 OTHER: Delay 
 PERCEPT: Tracking information received  
 GOAL: Arrange delivery  
 GOAL: Log books outgoing  
 GOAL: Inform customer  
     GOAL: Update delivery problem (Lin et al., 2001) 

 
Functionality descriptors, goals, and use cases give different views 

of a common underlying system. Therefore, they should be checked 
for mutual consistency. For example an interaction between 
functionalities in a use case scenario should also be evident in the 
interactions field of a functionality descriptor. Again, each system 
goal should be represented in at least one scenario; use case scenarios 
should cover the important normal uses of the system as well as some 
error/unusual situations, in order to give an idea of how these will be 
handled (Winikoff et al., 2001). 

.  
   
3.0 Methodology 
 

The Prometheus methodology supports the full life cycle‚ 
including testing and debugging. David Poutakidis‚(2013)  a research 
student of the authors(Lin Padghan and Michael Winikoff) ‚ has been 
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working on debugging MAS‚ using design artifacts such as those 
produced by the Prometheus methodology.  
 
One technique that we use to systematically examine the properties 
which lead to coupling and cohesion is the Data Coupling Diagram. 
Potential groupings are then evaluated and possibly refined using an 
Agent Acquaintance Diagram.  
 
A data coupling diagram (Figure 1.2) consists of the functionalities 
and all identified data (not only persistent data, but also data the 
functionalities re-quire to fulfill their job). Directed links are then 
inserted between functionalities and data, where an arrow pointing 
towards the data indicates the data is produced or written by that 
functionality, whereas an arrow pointing towards the functionality 
indicates the data is used by the functionality. A double-headed arrow 
indicates that the functionality uses and produces the data. Edges 
between data and data or between functionality and functionality are 
incorrect syntax (and cannot be drawn in the tool) (Padghan and 
Winikoff, 2010). 
 

The data coupling diagram is used to identify groupings which are 
linked by their data use. When assessing the diagram visually we are 
looking for clusters of functionalities around data. This is one 
important aspect in the analysis of potential groupings of 
functionalities. It is also used to guide refinements and changes to 
achieve a cleaner delineation between agents (Padghan and Winikoff, 
2010). 
 

Some reasons for grouping functionalities into a single agent are if 
the functionalities seem to be related or if they share a lot of 
information. Some reasons for not grouping functionalities are if the 
functionalities are clearly unrelated, or if they exist on different 
hardware platforms (Padghan and Winikoff, 2010). 
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Figure 1.2. Data Coupling Diagram (Allan & Kurt, 2012).   
 
 

In order to evaluate a potential grouping of functionalities into 
agents with respect to agent coupling, we use an agent acquaintance 
diagram (Figure 1.3). This diagram represents each of the agent types 
in the system. Information about agent interaction is extracted from 
the functionality descriptors and each agent type is linked with the 
other agent types it interacts with. Links can be decorated with the 
cardinality of the relationship if desired (e.g., one warehouse agent 
interacts with many sales agents) (Allan & Kurt, 2012).  .  
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We then analyse the resulting diagram in two ways. One is simply an 
analysis of the density of the links within the diagram. It is a measure 
of the ratio of the actual coupling to the maximal possible coupling. If 
the system has four agents, then each agent could potentially be linked 
to a maximum of three other agents, giving a total number of 3 + 2 + 1 
possible links. To get the link density we simply count the links and 
divide by this number. This measure is only one aspect of the 
analysis.We also consider bottlenecks and other issues(Avison, & 
Fitzgerald,2013) 
 

 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 1.3. Agent Acquaintance Diagram (Avison, & 
Fitzgerald,2013) 

 
 
4.0 System Design and Implementation  

The system overview diagram is arguably the single most 
important artifact of the entire design process, although it cannot 
really be understood fully in isolation. The various descriptors 
provide the more detailed information that may be required.  

The notation used in the system overview diagram (Figure 1.5) and 
in agent and capability overview diagrams is a directed graph where 
nodes represent design entities and directed arcs represent 
relationships. Figure 1.4 depicts the nodes that are currently used. 
These correspond directly to the concepts used in the Prometheus 
methodology.  
A syntactically valid overview diagram consists of a set of nodes 
(excluding goals and functionalities), each labelled with a name, with 
links between them. We distinguish between “active” nodes (entities 
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that do things – agents, capabilities, and plans) and “passive” nodes 
(anything else – percepts, actions, messages, protocols, data). A link 
is valid from an active node to a passive node or from a passive node 
to an active node. A link is not valid from an active to an active node 
or from a passive to a passive node. An additional constraint is that 
there cannot be links to a percept and there cannot be links from an 
action. 
 
 
 
 
   
 
 
 
 
 
 
 
Figure 1.4. Notation used in Overview Diagrams (Burmeister & 

Cossentino, 2011). 
 
  
The meaning of links is as follows (Burmeister & Cossentino, 2011): 
 

A link to a message indicates that the agent type (or capability 
or plan) sends that message.   
A link to a protocol indicates that the entity communicates using 
the protocol in question.   
A link to an action indicates that the entity performs the action.   
A link to a data node indicates that the entity writes to it.  

 
A link from a message indicates that the agent type (or 
capability or plan) receives that message.   
A link from a percept indicates that the entity receives the 
percept.  
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A link from a data node indicates that the entity reads the data.   
When drawing the system overview diagrams (Figure 1.5) we 

started by creating a named agent symbol for each agent type. We 
also add the percepts and actions at this point.  

Furthermore, a data store icon is placed for each persistent data 
store, with an incoming link from each agent that writes to the data 
store and an outgoing link from the data store to each agent that 
directly accesses the data. Double headed links (arrows at both ends) 
indicate both read and write. Once interaction protocols have been 
defined they are added into the diagram and we indicate which agents 
participate in these protocols. 
This sub-phase focuses on the system’s dynamic behaviour by fully 
specifying the interaction between agents. Interaction diagrams 
borrowed from UML sequence diagrams are used as an initial 
representation of agent interaction. Fully specified interaction 
protocols (borrowed from the revised version of AUML currently 
under development) are the final design artifact (Avison, & 
Fitzgerald,2013) 
  

Interaction diagrams are the same as sequence diagrams of UML 
except that they show interaction between agents rather than objects. 
One of the main processes for developing interaction diagrams is to 
take the use case scenarios developed in the specification phase and 
to build corresponding interaction diagrams, showing the interaction 
between agents in a scenario.  
As with scenarios, we would expect only to have a representative set 
of interaction diagrams, not a complete set. In order to have complete 
and precisely defined interactions, we progress from interaction 
diagrams to protocols which define exactly which interaction 
sequences are valid within the system (Avison, & Fitzgerald,2013) 
.  
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Figure 1.5. System Overview Diagram (excerpt) (Burmeister & 
Cossentino, 2011). 

  
Developing protocols is done by considering alternatives. For each 

message (or percept) that an agent receives we ask “what are the 
possible messages that the agent could send as a response?” We then 
repeat the process for these messages. However, since protocols must 
show all variations, they are often larger than the corresponding 
interaction diagram and of need to be split into smaller chunks.  
An example of interaction diagram is shown in Figure 1.6, while an 
example of interaction protocol (using the new AUML notation) is 
shown in Figure 1.7(Lin et al., 2001) 
Furthermore, this phase deals with the internals of each agent‚ rather 
than the system as a whole. We use a hierarchical model so that each 
agent is broken up into capabilities. Capabilities may be included in 
more than one agent (Lin et al., 2001). 

The steps with detailed design are: 
 
Step 1: Develop agent overviews (showing interactions between 
capabilities) and capability descriptors. (Lin et al., 2001) 
Step 2: Develop the internal process of an agent from the interaction 
protocols described, using a variant of UML activity diagrams. (Lin et 
al., 2001) 
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Figure 1.6.Interaction Diagram (Lin et al., 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7.Interaction Protocol (Ardis, 2012). 
 
Step 3: Develop the internal design of each capability in terms of plans‚ 
events‚ beliefs‚ and (possibly) sub-capabilities. 
 

The process followed is essentially iterative refinement. We begin by 
considering for each agent what the agent needs to be able to do. Often‚ 
the functionalities that were grouped to form the agent type will be a 
good starting point for defining the capabilities of that agent type (Ardis, 
2012).  
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We then connect up the capabilities. As depicted in the system 
overview diagram‚ each agent has incoming and outgoing messages‚ 
percepts that it received‚ actions that it performs‚ and data that is read 
and/or written. Each of these connections to an agent is mirrored in the 
agent overview diagram for that agent type. The agent overview diagram 
for a given agent type is quite similar to the system overview diagram‚ 
but shows interactions between capabilities within an agent‚ rather than 
between agents within a system. Any messages or percepts that are 
incoming to an agent in the system overview‚ must be incoming to some 
capability (or plan) within that agent in the capability overview diagram. 
Similarly any actions or messages that are outgoing from an agent in the 
system overview‚ must be outgoing from some capability (or plan) 
within that agent in the capability overview diagram. 
Once capabilities (and plans) within an agent have been defined we 
consider each capability and refine its internals. This process continues 
until the internal operation of each agent and each capability is defined in 
terms of plans‚ messages‚ data‚ and other capabilities (Lin et al., 2001) 
Designs for large systems are almost always developed incrementally 
with many revisions. When revising any artifact‚ be it documentation‚ 
code‚ or de-sign‚ it is easy to introduce inconsistencies and minor errors. 
We have found tool support to be extremely useful for checking and 
maintaining design consistency across varying levels of detail (Lin et al., 
2001) 
 
5.0 Discussion 

The Prometheus Design Tool (PDT) allows a user to enter and edit a 
design‚ in terms of Prometheus concepts; check the design for a range of 
possible inconsistencies; and automatically generate a design report that 
includes descriptors for each design entity‚ a design dictionary‚ and the 
various diagrams. It also provides descriptor forms which prompt for the 
various aspects which should be considered. When any aspect of the 
design is modified‚ the change is propagated to all levels‚ although in 
some cases user input is still required for finalization.  
PDT supports the Prometheus methodology in a number of ways. It sup-
ports the process of deriving agent types from functionalities by deriving 
part of each agent’s interface‚ by cross checking the declared interface of 
an agent against the functionalities that make up the agent type. It also 
generates coupling and acquaintance diagrams. It supports the process of 
developing the internals of agents in the detailed design phase by cross 
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checking an agent’s internals against the agent’s declared interface‚ 
checking the consistency of a plan with its context‚ and by supporting 
views of design diagrams at different levels (system overview‚ agent 
overview‚ and capability overview). For more details on tool support for 
the Prometheus methodology, see Padgham and Winikoff‚ (2002).   
The Prometheus Design Tool is currently available and further 
functionality is under development. 

 
Specifically‚ the work described in Poutakidis et al.‚ (2003); used 

interaction protocols expressed in AUML (Odell et al.‚ 2000). These are 
translated into Petri nets and a debugging agent used these to monitor 
agent interactions and alert the programmer when a protocol is not 
followed correctly. 
 
  
The latest version of the JACK Development Environment (JDE) 
includes a design tool that allows Prometheus overview diagrams (based 
on a slightly older version of the methodology) to be drawn. The JDE 
also includes a graphical user interface that allows the structure of an 
agent system to be built by drag-and-drop and by filling in forms.  
The JDE supports the Prometheus methodology in that the concepts 
provided by JDE correspond to the artifacts developed in Prometheus’ 
detailed design phase. It is important to realise that the agent structure 
described in the JDE generates JACK code that can be compiled and run. 
This automatic generation of skeleton code from design artifacts is 
extremely useful‚ and has encouraged students to do design prior to 
coding.  
 
Conclusion. 

Indeed, the Prometheus methodology has been developed over a number of 
years‚ as a response to both educational and industrial needs. During its 
development it has been used by industrial practitioners‚ taught at workshops at 
a number of conferences‚ and has been taught to undergraduate and 
postgraduate students‚ as well as having been used in student projects.  

The Prometheus methodology has partially grown and assisted students in 
their efforts to develop agent systems, without a methodology‚ graduate 
student would flounder and end up building a system which made little real use 
of agents (Padgham and Winikoff‚ 2002).   
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The methodology has formed the basis for a course on agent-oriented design 
that is offered by Agent Oriented System (AOS) to industry software 
developers who are starting to use the JACK intelligent agents’ development 
environment and has been successful in introducing them to methods to assist 
them in design of agent applications (Busetta et al.‚ 1998). For example‚ a 
prototype weather alerting system developed for the Australian Bureau of 
Meteorology by Agent Oriented System (AOS) used Prometheus overview 
diagrams using the JDE to capture the design. The Prometheus overview 
diagram notation as implemented in the JDE was also used within Agent 
Oriented System (AOS) on a range of projects (Mathieson et al.‚ 2004).  

Again, the Prometheus methodology has also been taught to undergraduate 
students as a class. The class spends roughly half of the semester covering the 
methodology and the other half introducing the JACK agent programming 
language and plat-form. The students were able to design and implement 
reasonable agent systems in a single semester (Lin et al., 2001) 
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