
 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         892 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

THE PROMETHEUS; A 
SPECIAL PURPOSE 

METHODOLOGY 
 

BY 
 

1 Omankwu, Obinnaya Chinecherem; 
Department of Computer Science, 

Michael Okpara University of Agriculture, 
Umudike Umuahia, Abia State, Nigeria. 

saintbeloved@yahoo.com 
 

2 Anigbogu, S.O. 
Department of Computer Science, 

Nnamdi Azikiwe University, 
Awka Anambra State, 

Nigeria. 
dranigbogu@yahoo.com 

 
3 Nwagu, Kenneth Chikezie 

Department of Computer Science, 
Nnamdi Azikiwe University, 

Awka Anambra State, Nigeria, 
Nwaguchikeziekenneth@hotmail.com 

 
4 Anigbogu, G.N. 

Department of Computer Science, 
Nwafor Orizu College of Education, 

Nsugbe-Onitsha. Anambra State, Nigeria. 
anigbogugloria@yahoo.com 

 
 

 
Abstract  
In this paper we presented the Prometheus methodology for building agent-
based software systems. Our objectives in presenting Prometheus as a 
special purpose methodology were to have a process with associated 
deliverables which could be used by industry practitioners and 
undergraduate students without a previous background in agents’ studies. 
Prometheus as an agent oriented methodology was developed based on the 
principles of Knowledge based engineering methodology. Prometheus 
comprised of three phases: system specification, architectural design, and 
detailed design. This special purpose methodology was used by industrial 

IJSER

http://www.ijser.org/
mailto:dranigbogu@yahoo.com
mailto:Nwaguchikeziekenneth@hotmail.com
mailto:anigbogugloria@yahoo.com


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         893 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

practitioners, taught at workshops at a number of conferences, and has also 
been taught to undergraduate and postgraduate students, as well as used in 
student projects.  

 
Keywords: Agents, Software Engineering, Methodologies. 
 
 
1.0 INTRODUCTION 
  
Prometheus is a methodology for developing agent-oriented software 
systems. Our goal in developing Prometheus was to have a process 
with associated deliverables which could be used by industry 
practitioners and undergraduate students to develop intelligent agents 
systems, without necessarily a previous background in agent’s 
studies. Prometheus as a special purpose methodology covers only 
three phases of software development stages as applied to agent 
systems development. 

The Prometheus methodology includes three phases: 
 
The system specification phase: This focuses on (i) identifying the 
system’s interface, which consists of percepts (information from the 
environment), and actions; and (ii) deter-mining the system’s goals, 
functionalities, and use case scenarios, along with any important 
shared data. The outputs from this phase are set of functionality 
descriptions, percept and action descriptions, system goals, and use 
case scenarios (Bresciani et al., 2002).  
 
The architectural design phase: This uses the outputs from the 
previous phase to determine which agents the system will contain, 
how they will inter-act, and what significant events occur in the 
environment. The outputs of this phase are system overview diagram, 
agent descriptions, agent interaction protocols and a list of significant 
events and messages between agents (Winikoff et al., 2001). 

The three aspects that are developed during architectural design are: 
 

1 Deciding on the agent types used in the application. Agent types 
are formed by grouping a number of functionalities together. 
Diagrams which we use to assist in the analysis are data 
coupling diagrams and agent acquaintance diagrams (Winikoff 
et al., 2001). 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         894 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
2. Designing the overall system structure (with a system overview 

diagram along with descriptors) (Winikoff et al., 2001). 
 

3. Describing the interactions between agents using interaction 
diagrams (developed from scenarios) and interaction protocols 
(developed from interaction diagrams) (Winikoff et al., 2001).  

 
The detailed design phase: This looks at the internal structure of 
each agent and how it will accomplish its tasks within the overall 
system. The outcomes of this phase are detailed diagrams showing the 
internal functionality of each agent and its capabilities, process 
diagrams that show the internal processing of the agent, as well as 
descriptions of data structures used by the agent, plans and subtasks 
and the details of plan triggers (Bresciani et al., 2002).   
Figure 1.1 indicates the main design artifacts that arise from each of 
these phases as well as some of the intermediary items and 
relationships between items. The figure shows the models and 
dependencies, but does not show the process (although it does imply 
it).  
 
The development (and revision) of the various models depicted in 
Figure 1.1 is intended to proceed in an iterative fashion (similar to the 
Rational Unified Process) where in each iteration the focus of the work 
gradually shifts further down towards implementation. However, it is 
expected that most iterations will not be exclusively concerned with a 
single phase such that many iterations will involve revision of 
previously developed models(Winikoff et al., 2001)..  

Furthermore, Figure 1.1 is divided horizontally and vertically. The 
three horizontal regions form the three phases of the methodology 
discussed above. The left-most region (consisting of scenarios, 
interaction diagrams, interaction protocols and process diagrams) 
deals with descriptions of the dynamic behaviour of the system. The 
middle vertical region (data coupling, acquaintance, system 
overview, agent overview and capability overview) deal with 
overviews of the system while the remaining models (the right 
region) give detailed descriptions for each entity in the system. Both 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         895 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

the middle and right region deal with the static structure of the system 
(Winikoff et al., 2001). 

 
 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1.Overview of the Prometheus Methodology (Winikoff et al., 
2001). 
 
2.0 Literature Review. 
 
Prometheus, like any other methodology, defines a number of system 
models and notations that are used to describe these models. We 
describe structural overviews at various levels (system, agent, 
capability) with a single diagram type. In addition, diagrams are used 
for showing data coupling and agent acquaintance relationships. 
Dynamic behaviour is currently described with existing models from 
UML (Unified Modeling Language) and AUML (Agent UML) 
(Winikoff et al., 2001). 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         896 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

In addition to graphical notations, we use structured textual 
descriptors (i.e., forms) for describing individual system entities (e.g., 
agents, functionalities, plans, etc.). We also maintain a data dictionary 
which is important in ensuring consistent use of names.  
It is important to note that Prometheus is a general purpose 
methodology. In particular, most of the methodology (specification 
and architectural design) does not assume particular agent architecture. 
Although the detailed design phase does target a particular family of 
agent architectures (namely those that achieve goals using a library of 
plans), yet, did not make Prometheus special- purpose. Any 
methodology that addresses implementation needs to have a target 
platform. For example, Tropos (Bresciani et al., 2002) also targets 
BDI-like systems, whereas Gaia avoids the issue by not addressing 
implementation.   
System specification consists of three main activities: determining the 
system’s interface to the environment, determining the system’s goals 
and functionalities, and determining scenarios which capture the 
usage of the system.  
 
Since agents are situated, one of the key things to be captured in the 
development process is how the agents interact with their 
environment. For instance, following standard terminology as put 
forward by Russell and Norvig, (1995) we recall incoming 
information from the environment percepts and agents as a means of 
affecting the environment actions. As discussed in Winikoff et al.,  
(2001) the raw data from percepts may need to be processed in order 
to obtain an event that are of significance event for the agent system. 
Prometheus prompts the developer to consider such issues such as a 
video frame from a camera on a soccer playing robot which may need 
processing to extract the symbolic objects, including ball, goal and 
players, as well as further processing to determine whether anything 
significant has actually happened, which may include a ball having 
moved since a previous frame, or a ball not appearing where one was 
expected (Winikoff et al., 2001)..  

Furthermore, determining the system’s goals and functionalities is 
done by iterating over the following steps (Russell and Norvig, 
1995): 
 

Identify and refine system goals – main and subsidiary;   

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         897 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Group goals into functionalities;   
Prepare functionality descriptors;   
Define use case scenarios (and variations); and   
Check that all goals are covered by scenarios.   

An initial set of goals is identified from the initial requirements. 
These are refined and elaborated into a hierarchy of goals by asking 
how goals will be achieved, and why goals are being achieved (van 
Lamsweerde, 2001). For example, designing an online book store, we 
might have a high-level goal fully online system. This goal might 
have associated with the subgoals find books online, pay online and 
order online.  

Functionalities are limited “chunks” of system behaviour that 
describe in a broad sense what the system needs to be able to do. We 
derive functionalities by grouping related goals. For example, given 
the goals above, we might also have another high-level goal of 
purchase books with subgoals, find books, place order, make 
payment, and arrange delivery. Pay online and make payment are 
clearly closely related if not identical goals, and are therefore grouped 
together in a single functionality (Russell and Norvig, 1995).  

Functionality descriptors capture the name and description of each 
functionality as well as what events activate it; what goals it achieves; 
what actions it performs; what percepts it receives; what messages it 
sends/receives, and what data it uses and produces.  

Use case scenarios are complementary to goals in that they show 
how processes are composed within the system. In developing goals, 
we are typically building up scenarios of how these goals will be part 
of various processes within the system. Scenarios enable us to specify 
some of this structure, which in turn may help to identify missing 
goals.  

Furthermore, use case scenarios are also based on ideas from 
object oriented design but are more structured. This structure allows 
for automated cross checking, and automatic production of partial 
information for later design artifacts (e.g., protocols) (Winikoff et al., 
2001).  

The core of the use case scenario is the sequence of steps 
describing a particular example of the system in operation. Each step 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         898 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

can optionally have data read and data written noted as well as the 
functionality that performs that step. Each step can be a GOAL, 
ACTION, PERCEPT or SCENARIO, as well as OTHER allowing for 
additional step types, even though these cannot be used in automated 
processing. The following example illustrates the steps of a use case 
scenario in Prometheus (Winikoff et al., 2001). 

 
 

 
Query Late Books Scenario  
Trigger: User enquiry  
 GOAL: Determine delivery status  
 GOAL: Log delivery problem  
 ACTION: Request delivery tracking  
 GOAL: Inform customer  
 OTHER: Delay 
 PERCEPT: Tracking information received  
 GOAL: Arrange delivery  
 GOAL: Log books outgoing  
 GOAL: Inform customer  
     GOAL: Update delivery problem (Lin et al., 2001) 

 
Functionality descriptors, goals, and use cases give different views 

of a common underlying system. Therefore, they should be checked 
for mutual consistency. For example an interaction between 
functionalities in a use case scenario should also be evident in the 
interactions field of a functionality descriptor. Again, each system 
goal should be represented in at least one scenario; use case scenarios 
should cover the important normal uses of the system as well as some 
error/unusual situations, in order to give an idea of how these will be 
handled (Winikoff et al., 2001). 

.  
   
3.0 Methodology 
 

The Prometheus methodology supports the full life cycle‚ 
including testing and debugging. David Poutakidis‚(2013)  a research 
student of the authors(Lin Padghan and Michael Winikoff) ‚ has been 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         899 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

working on debugging MAS‚ using design artifacts such as those 
produced by the Prometheus methodology.  
 
One technique that we use to systematically examine the properties 
which lead to coupling and cohesion is the Data Coupling Diagram. 
Potential groupings are then evaluated and possibly refined using an 
Agent Acquaintance Diagram.  
 
A data coupling diagram (Figure 1.2) consists of the functionalities 
and all identified data (not only persistent data, but also data the 
functionalities re-quire to fulfill their job). Directed links are then 
inserted between functionalities and data, where an arrow pointing 
towards the data indicates the data is produced or written by that 
functionality, whereas an arrow pointing towards the functionality 
indicates the data is used by the functionality. A double-headed arrow 
indicates that the functionality uses and produces the data. Edges 
between data and data or between functionality and functionality are 
incorrect syntax (and cannot be drawn in the tool) (Padghan and 
Winikoff, 2010). 
 

The data coupling diagram is used to identify groupings which are 
linked by their data use. When assessing the diagram visually we are 
looking for clusters of functionalities around data. This is one 
important aspect in the analysis of potential groupings of 
functionalities. It is also used to guide refinements and changes to 
achieve a cleaner delineation between agents (Padghan and Winikoff, 
2010). 
 

Some reasons for grouping functionalities into a single agent are if 
the functionalities seem to be related or if they share a lot of 
information. Some reasons for not grouping functionalities are if the 
functionalities are clearly unrelated, or if they exist on different 
hardware platforms (Padghan and Winikoff, 2010). 
 
 
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         900 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
 
 
 
 
 
 
 
. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2. Data Coupling Diagram (Allan & Kurt, 2012).   
 
 

In order to evaluate a potential grouping of functionalities into 
agents with respect to agent coupling, we use an agent acquaintance 
diagram (Figure 1.3). This diagram represents each of the agent types 
in the system. Information about agent interaction is extracted from 
the functionality descriptors and each agent type is linked with the 
other agent types it interacts with. Links can be decorated with the 
cardinality of the relationship if desired (e.g., one warehouse agent 
interacts with many sales agents) (Allan & Kurt, 2012).  .  
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         901 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

We then analyse the resulting diagram in two ways. One is simply an 
analysis of the density of the links within the diagram. It is a measure 
of the ratio of the actual coupling to the maximal possible coupling. If 
the system has four agents, then each agent could potentially be linked 
to a maximum of three other agents, giving a total number of 3 + 2 + 1 
possible links. To get the link density we simply count the links and 
divide by this number. This measure is only one aspect of the 
analysis.We also consider bottlenecks and other issues(Avison, & 
Fitzgerald,2013) 
 

 
  

 
 
 
 
 
 
 
 
 
 
 

Figure 1.3. Agent Acquaintance Diagram (Avison, & 
Fitzgerald,2013) 

 
 
4.0 System Design and Implementation  

The system overview diagram is arguably the single most 
important artifact of the entire design process, although it cannot 
really be understood fully in isolation. The various descriptors 
provide the more detailed information that may be required.  

The notation used in the system overview diagram (Figure 1.5) and 
in agent and capability overview diagrams is a directed graph where 
nodes represent design entities and directed arcs represent 
relationships. Figure 1.4 depicts the nodes that are currently used. 
These correspond directly to the concepts used in the Prometheus 
methodology.  
A syntactically valid overview diagram consists of a set of nodes 
(excluding goals and functionalities), each labelled with a name, with 
links between them. We distinguish between “active” nodes (entities 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         902 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

that do things – agents, capabilities, and plans) and “passive” nodes 
(anything else – percepts, actions, messages, protocols, data). A link 
is valid from an active node to a passive node or from a passive node 
to an active node. A link is not valid from an active to an active node 
or from a passive to a passive node. An additional constraint is that 
there cannot be links to a percept and there cannot be links from an 
action. 
 
 
 
 
   
 
 
 
 
 
 
 
Figure 1.4. Notation used in Overview Diagrams (Burmeister & 

Cossentino, 2011). 
 
  
The meaning of links is as follows (Burmeister & Cossentino, 2011): 
 

A link to a message indicates that the agent type (or capability 
or plan) sends that message.   
A link to a protocol indicates that the entity communicates using 
the protocol in question.   
A link to an action indicates that the entity performs the action.   
A link to a data node indicates that the entity writes to it.  

 
A link from a message indicates that the agent type (or 
capability or plan) receives that message.   
A link from a percept indicates that the entity receives the 
percept.  

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         903 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

A link from a data node indicates that the entity reads the data.   
When drawing the system overview diagrams (Figure 1.5) we 

started by creating a named agent symbol for each agent type. We 
also add the percepts and actions at this point.  

Furthermore, a data store icon is placed for each persistent data 
store, with an incoming link from each agent that writes to the data 
store and an outgoing link from the data store to each agent that 
directly accesses the data. Double headed links (arrows at both ends) 
indicate both read and write. Once interaction protocols have been 
defined they are added into the diagram and we indicate which agents 
participate in these protocols. 
This sub-phase focuses on the system’s dynamic behaviour by fully 
specifying the interaction between agents. Interaction diagrams 
borrowed from UML sequence diagrams are used as an initial 
representation of agent interaction. Fully specified interaction 
protocols (borrowed from the revised version of AUML currently 
under development) are the final design artifact (Avison, & 
Fitzgerald,2013) 
  

Interaction diagrams are the same as sequence diagrams of UML 
except that they show interaction between agents rather than objects. 
One of the main processes for developing interaction diagrams is to 
take the use case scenarios developed in the specification phase and 
to build corresponding interaction diagrams, showing the interaction 
between agents in a scenario.  
As with scenarios, we would expect only to have a representative set 
of interaction diagrams, not a complete set. In order to have complete 
and precisely defined interactions, we progress from interaction 
diagrams to protocols which define exactly which interaction 
sequences are valid within the system (Avison, & Fitzgerald,2013) 
.  
 
 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         904 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
 
 
 
 

Figure 1.5. System Overview Diagram (excerpt) (Burmeister & 
Cossentino, 2011). 

  
Developing protocols is done by considering alternatives. For each 

message (or percept) that an agent receives we ask “what are the 
possible messages that the agent could send as a response?” We then 
repeat the process for these messages. However, since protocols must 
show all variations, they are often larger than the corresponding 
interaction diagram and of need to be split into smaller chunks.  
An example of interaction diagram is shown in Figure 1.6, while an 
example of interaction protocol (using the new AUML notation) is 
shown in Figure 1.7(Lin et al., 2001) 
Furthermore, this phase deals with the internals of each agent‚ rather 
than the system as a whole. We use a hierarchical model so that each 
agent is broken up into capabilities. Capabilities may be included in 
more than one agent (Lin et al., 2001). 

The steps with detailed design are: 
 
Step 1: Develop agent overviews (showing interactions between 
capabilities) and capability descriptors. (Lin et al., 2001) 
Step 2: Develop the internal process of an agent from the interaction 
protocols described, using a variant of UML activity diagrams. (Lin et 
al., 2001) 
 

 
 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         905 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
 

Figure 1.6.Interaction Diagram (Lin et al., 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7.Interaction Protocol (Ardis, 2012). 
 
Step 3: Develop the internal design of each capability in terms of plans‚ 
events‚ beliefs‚ and (possibly) sub-capabilities. 
 

The process followed is essentially iterative refinement. We begin by 
considering for each agent what the agent needs to be able to do. Often‚ 
the functionalities that were grouped to form the agent type will be a 
good starting point for defining the capabilities of that agent type (Ardis, 
2012).  

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         906 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

We then connect up the capabilities. As depicted in the system 
overview diagram‚ each agent has incoming and outgoing messages‚ 
percepts that it received‚ actions that it performs‚ and data that is read 
and/or written. Each of these connections to an agent is mirrored in the 
agent overview diagram for that agent type. The agent overview diagram 
for a given agent type is quite similar to the system overview diagram‚ 
but shows interactions between capabilities within an agent‚ rather than 
between agents within a system. Any messages or percepts that are 
incoming to an agent in the system overview‚ must be incoming to some 
capability (or plan) within that agent in the capability overview diagram. 
Similarly any actions or messages that are outgoing from an agent in the 
system overview‚ must be outgoing from some capability (or plan) 
within that agent in the capability overview diagram. 
Once capabilities (and plans) within an agent have been defined we 
consider each capability and refine its internals. This process continues 
until the internal operation of each agent and each capability is defined in 
terms of plans‚ messages‚ data‚ and other capabilities (Lin et al., 2001) 
Designs for large systems are almost always developed incrementally 
with many revisions. When revising any artifact‚ be it documentation‚ 
code‚ or de-sign‚ it is easy to introduce inconsistencies and minor errors. 
We have found tool support to be extremely useful for checking and 
maintaining design consistency across varying levels of detail (Lin et al., 
2001) 
 
5.0 Discussion 

The Prometheus Design Tool (PDT) allows a user to enter and edit a 
design‚ in terms of Prometheus concepts; check the design for a range of 
possible inconsistencies; and automatically generate a design report that 
includes descriptors for each design entity‚ a design dictionary‚ and the 
various diagrams. It also provides descriptor forms which prompt for the 
various aspects which should be considered. When any aspect of the 
design is modified‚ the change is propagated to all levels‚ although in 
some cases user input is still required for finalization.  
PDT supports the Prometheus methodology in a number of ways. It sup-
ports the process of deriving agent types from functionalities by deriving 
part of each agent’s interface‚ by cross checking the declared interface of 
an agent against the functionalities that make up the agent type. It also 
generates coupling and acquaintance diagrams. It supports the process of 
developing the internals of agents in the detailed design phase by cross 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         907 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

checking an agent’s internals against the agent’s declared interface‚ 
checking the consistency of a plan with its context‚ and by supporting 
views of design diagrams at different levels (system overview‚ agent 
overview‚ and capability overview). For more details on tool support for 
the Prometheus methodology, see Padgham and Winikoff‚ (2002).   
The Prometheus Design Tool is currently available and further 
functionality is under development. 

 
Specifically‚ the work described in Poutakidis et al.‚ (2003); used 

interaction protocols expressed in AUML (Odell et al.‚ 2000). These are 
translated into Petri nets and a debugging agent used these to monitor 
agent interactions and alert the programmer when a protocol is not 
followed correctly. 
 
  
The latest version of the JACK Development Environment (JDE) 
includes a design tool that allows Prometheus overview diagrams (based 
on a slightly older version of the methodology) to be drawn. The JDE 
also includes a graphical user interface that allows the structure of an 
agent system to be built by drag-and-drop and by filling in forms.  
The JDE supports the Prometheus methodology in that the concepts 
provided by JDE correspond to the artifacts developed in Prometheus’ 
detailed design phase. It is important to realise that the agent structure 
described in the JDE generates JACK code that can be compiled and run. 
This automatic generation of skeleton code from design artifacts is 
extremely useful‚ and has encouraged students to do design prior to 
coding.  
 
Conclusion. 

Indeed, the Prometheus methodology has been developed over a number of 
years‚ as a response to both educational and industrial needs. During its 
development it has been used by industrial practitioners‚ taught at workshops at 
a number of conferences‚ and has been taught to undergraduate and 
postgraduate students‚ as well as having been used in student projects.  

The Prometheus methodology has partially grown and assisted students in 
their efforts to develop agent systems, without a methodology‚ graduate 
student would flounder and end up building a system which made little real use 
of agents (Padgham and Winikoff‚ 2002).   

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         908 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

The methodology has formed the basis for a course on agent-oriented design 
that is offered by Agent Oriented System (AOS) to industry software 
developers who are starting to use the JACK intelligent agents’ development 
environment and has been successful in introducing them to methods to assist 
them in design of agent applications (Busetta et al.‚ 1998). For example‚ a 
prototype weather alerting system developed for the Australian Bureau of 
Meteorology by Agent Oriented System (AOS) used Prometheus overview 
diagrams using the JDE to capture the design. The Prometheus overview 
diagram notation as implemented in the JDE was also used within Agent 
Oriented System (AOS) on a range of projects (Mathieson et al.‚ 2004).  

Again, the Prometheus methodology has also been taught to undergraduate 
students as a class. The class spends roughly half of the semester covering the 
methodology and the other half introducing the JACK agent programming 
language and plat-form. The students were able to design and implement 
reasonable agent systems in a single semester (Lin et al., 2001) 
 
 
 
References 
 
Allan, W., & Kurt, C. (2012).  A framework for evaluating software 
technology. IEEE  Computer Society Press. 
 
Allan, M., & Wallnau, T. (2012). The Rational Unified Process: An 
Introduction.      Addison-  Wesley Pub Co. 
 
Arazy, O., & Woo, C. (2012.). Analysis and design of agent-oriented 
information systems. The     Knowledge Engineering Review, 
17(2).  
 

Ardis, A., John A., & James V. (2012). A framework for evaluating 
specification   methods for    reactive systems: Experience report. In 
International Conference on  Software Engineering,  pages 159-
168. 
 
Avison, D., & Fitzgerald, G. (2013). Information Systems Development: 
Methodologies,   Techniques and Tools. McGraw-Hill: New York. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         909 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Avison, D., & Fitzgerald, G. (2011). Information Systems Development: 
Agent Oriented   Methodologies, Techniques and Tools. McGraw-
Hill: New York. 
 
 
Barbara, A., Drogoul, A., & Benhamou, P. (2016). Agent-oriented design 
of a soccer robot team.   In Proceedings of the Second International 
Conference on Multi-Agent Systems. Menlo   Park, CA: American 
Association for Artificial Intelligence. 
 
Barbara K., (2012). DESMET: a method for evaluating software 
engineering methods  and tools.   Technical Report TR96-09, 
University of Keele, U.K.  
 
Bauer, B., & Odell, J. (2005). UML 2.0 and agents: how to build agent-
based systems   with    the new UML standard, Journal of 
Engineering Applications of   Artificial Intelligence  Vol. 18, Issue 2, 
2005. 
 
Belina, F., Hofgrefe, D. & Sarma, A.,(2011). SDL with Applications from 
Protocol    Specification”, Prentice Hall Int., Hertfordshire, UK, 1991. 
 
Behling, K., (2010). Project Management – Theory and Practice. 
McGraw-Hill professional. 
 
Berard E. (2012). A comparison of object-oriented methodologies. 
Technical report, Object   Agency Inc.  
 
Bernon, C., & Glize, P. (2012). The ADELFE methodology for an 
intranet system design.   Washington, DC: Cato Institute. 
 
Berard E. (2011).A comparison of object-oriented methodologies, 
Technical report,Object   agency Inc. 
 
Bobkowska, A. (2005). Framework for methodologies of visual modeling 
language   evaluation, Proceedings of the symposia on 
Metainformatics, ACM Press   2005. 
 
 
Braubach, L., Pokahr, A., Moldt, D. and Lamersdorf W.(2005).Goal 
representation  for BDI   agent systems”, In R. Bordini, M. Dastani, 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         910 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

J. Dix . and A. El   Fallah Seghrouchni,   editors, Programming Multi-
Agent Systems, second Int.   Workshop (ProMAS’04),   vol. 3346 of 
LNAI, Pages 44–65. Springer   Verlag,. 
 
Brazier, F., Jonker, C. &  Treur, J. (2010).Principles of compositional 
multi-agent  system   development”, In Proceedings of Conference on 
Information Technology and   Knowledge Systems, Pages 347–360. 
Austrian  Computer Society. 
 
 
Bresciani, P.,Giorgin,N., Hiunchiglia, R., Mylopoulos,K., & Perini, A. 
(2014).Tropos: An agent-  oriented software development 
methodology.  Autonomous Agents and Multi-Agent   Systems. 
 
Bresciani, P., & Perini, A. (2010).Tropos: An agent-oriented software 
development methodology.    Autonomous Agents and Multi-Agent 
Systems. 
 
Buhr, R.,(2008). Use Case Maps as Architectural Entities for Complex 
Systems, IEEE   Transactions on Software Engineering. Vol. 24, 
No. 12, Pages 1131-1155,  2008. 
 
Buhr, R., & Casselman, R.(2011).Use Case Maps for Object-Oriented 
Systems.  Prentice- Hall,   USA. 
 
Burmeister, B.(2010). Models and Methodology for Agent-Oriented 
Analysis and   Design; In   Working Notes of the KI'96 Workshop on 
Agent-Oriented   Programming and  Distributed Systems, 
Saarbrilcken, Germany. 
 
Booch, G. (2014). Object-oriented analysis and design. Redwood City, 
CA: The   Benjamin/Cummings Publishing Company, Inc. 
 
Booch, G. Rumbaugh, J & Jacobson.I. (1998). The Unified Modeling 
Language User Guide.      Addison Wesley. 
 
Burrafato, P. & Cossentino, M. (2012). Designing a multi-agent solution 
for a bookstore with the   PASSI methodology. In P. Giorgini, Y. 
Lespérance, G. Wagner & E. Yu (Eds.),   Proceedings of the Agent-
Oriented Information Systems.  

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         911 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
Burrafato, P., & Cossentino, M. (2012). Designing a multi-agent solution 
for a bookstore with   the PASSI methodology. In P. Giorgini, Y. 
Lespérance, G. Wagner & E. Yu (Eds.),  Proceedings of the Agent-
Oriented Information Systems. 
 

Burmeister, F., & Cossentino,M,.(2011). Designing a multi-agent solution 
for a bookstore with      the   PASSI methodology. In 
Fourth International Bi-Conference Workshop on Agent-   
 Oriented  Information Systems (AOIS-2011), Toronto (Ontario, 
Canada). 
 
Bush,G., Stephen, C., & Martin P(2011). The Styx agent methodology. 

The Information Science   Discussion Paper Series 2012, 
Department of Information Science, University of Otago,   New 
Zealand.  

 

Brain, J., & Odell, J.(2010.). Object-oriented methods: 
Pragmatics and    considerations. Upper Saddle River, NJ: 
Prentice-Hall . 
 
Caire, G., & Leal,F. (2012): Recommendations on supporting tools. 
Technical Information Final    version, European Institute for 
Research and Strategic Studies in Telecommunications 
 (EURESCOM), July 2012. 
 
 
Caire, G., & Massonet, P. (2011). Agent-oriented analysis using 
MESSAGE/UML. In M.   Wooldridge, G. Wei, & P. Ciancarini 
(Eds.), Agent-oriented software engineering II.  
 
Castro, J., Kolp, M., & Mylopoulos, J.(2010). A requirements-driven 
development methodology.        In In Proceedings of the 
13th International Conference on Advanced Information Systems     
 Engineering (CAiSE'01), Interlaken, Switzerland. 
 
Castro, J., Kolp, M., & Mylopoulos, J. (2012). Towards requirements-
driven information  systems engineering: The Tropos project in 
Information Systems. 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         912 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
Cavedon, L., & Sonenberg, L. (1998). On social commitment, roles and 
preferred goals. In  Proceedings of the Third International Conference 
on Multi-Agent Systems (ICMAS),  Paris. IEEE Computer Society. 
 

Cavedon, L., & Sonenberg, L. (2012). On social commitment, roles and 
preferred goals. In   Proceedings of the Third International Conference 
on Multi-Agent Systems (ICMAS),  Paris. IEEE Computer Society. 
 
Cernuzzi, L., & Rossi, G.(2012).  On the evaluation of agent oriented 
modeling methods.        In Proceedings of Agent Oriented 
Methodology Workshop, Seattle. 
 
Cossentino, M., & Potts, C. (2012). A case tool supported methodology 
for the design of multi-     agent systems. In The 2002 
International Conference on Software Engineering Research   
   and Practice (SERP'02), Las Vegas (NV), USA.  
 
Cernuzzi, L., & Rossi, G. (2002). On the evaluation of agent oriented 
methodologies. In   Proceedings of OOPSLA 2002 Workshop on 
Agent-Oriented Methodologies. Sydney,   AUS: Centre for Object 
Technology Applications and Research. 
 

Cernuzzi, L., & Rossi, G. (2002). On the evaluation of agent oriented 
methodologies. In   Proceedings of OOPSLA 2002 Workshop on 
Agent-Oriented Methodologies. Sydney,   AUS: Centre for 
Object Technology Applications and Research. 
 

Collinot, C., & Treur, J. (2010). Deliberate normative agents: Principles 
and architectures.   In N. Jennings & Y. Lespérance (Eds.), Intelligent 
agents VI  Berlin: Springer-Verlag. 
 
Chan, K., & Karunasekera, S. (2004). Agent-oriented software analysis. 
In Proceedings of 2004  Australian Software Engineering 
Conference (pp. 20-27). Los Alamitos, CA: IEEE  Computer Society 
Press. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         913 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Chris, S., & Barbara, A. (2011). Evaluating software engineering 
methods and tools-part 4: the   influence of human factors. ACM 
SIGSOFT Software Engineering Notes.  
 
David, L., & Michael W.(2011) . Debugging multi-agent systems using 
design artifacts: The   case of interaction protocols. In Proceedings of the 
First International Joint Conference   on Autonomous Agents and Multi 
Agent Systems. 
 
David,L.(2012).Agent-Oriented Information Systems. Redwood City, CA: 
The   Benjamin/Cummings Publishing Company, Inc. 
 
Debenham, J., & Henderson-Sellers, B.(2010). Full lifecycle 
methodologies for agent-oriented      systems the extended 
OPEN process framework. In Proceedings of Agent-Oriented In-   
  formation Systems, Toronto. 
 
DeLoach,S.(2012). Multiagent systems engineering: A methodology and 
language for designing      agent systems. In Agent-Oriented 
Information Systems '99 (AOIS'99), Seattle WA. 
 
DeLoach, S. (2012). Analysis and design using MaSE and agentTool. In 
Proceedings of the 12th      Midwest Artificial Intelligence and 
Cognitive Science Conference (MAICS 2001), 2012. 
 

Dumke, R.(2011). Metrics-based evaluation of object-oriented software 
development methods.       In Proceedings of the 2nd 
Euromicro Conference on Software Maintenance and     
  Reengineering (CSMR'98), pages 193{196, Florence, Italy. 
 
E. Yu (2011). Modelling Strategic Relationships for Process 
Reengineering, University of   Toronto, Department of Computer 
Science, 2011. 
 

Eckert, G. (2010). Improving object-oriented analysis. Information and 

Software Technology. 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         914 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Elammari, M., & Lalonde, W.(2010). “An Agent-Oriented Methodology: 
High-Level  and    Intermediate   Models”, HLIM, Proceedings of 
AOIS Heidelberg. 
 
Frank, U. (2012). A comparison of two outstanding methodologies for 
object-oriented design.      Technical Report. 
 
Frank, U. (2012). Evaluating modeling languages: relevant issues, 
epistemological challenges     and a preliminary research 
framework. Technical Report 15, 2012. 
 

Genesereth, C., & Nelson, T. (2011). The importance of dealing with 
uncertainty in the       evaluation of   
 Software engineering methods and tools. In Proceedings of the  
   14th  international   Conference on Software 
engineering and knowledge engineering,     ACM  Press. 
 
Glaser, C., & Francisco, L. (2010). Agent oriented analysis using 
MESSAGE/UML. In Michael     W., Paolo, C., & 
Gerhard, W., editors, Second International Workshop on Agent-   
   Oriented  Software Engineering (AOSE-2012. 
 
Hans –Van, V.(2012). A CASE tool supported methodology for the 
design of multi-agent     systems. In H.R. Ababnia & Y. Mun 
(Eds.), Proceedings of the   2012   International    Conference on 
Software Engineering Research and Practice  (SERP’12), Las Vegas. 
 

Hans-Van, V. (2000). Software Engineering: Principles and Practice. 
John Wiley & Sons,   second edition. 
 
IEEE Std 610.12. IEEE Standard Glossary of Software Engineering 
Terminology, p.77,   1990. 
 

Iglesias,S.(2012). Evaluating modelling languages: relevant issues, 
epistemological         challenges and a preliminary 
research framework. Technical Report 15, University      
 of   Koblenz-Landau. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         915 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

James, O.(2012). Objects and agents compared. Journal of Object 

Technology. Toronto 

 
Jayaratna,N.(2012). Understanding and evaluating methodologies, 
NISAD: A systematic   framework”, Maidenhead, UK: McGraw-Hill. 
 
Jennings, N., Sycara, K., & Wooldridge, M.(2012). A Roadmap of Agent 
Research and   Development; In Autonomous Agents and Multi-Agent 
Systems Journal,  Publishers, Boston. 
 
Jennings, N., & Wooldridge, M.(2012). Agent-Oriented Software 
Engineering, in   proceedings of the 9th European Workshop on 
Modelling Autonomous Agents   in a   Multi-Agent World: Multi-
Agent System Engineering (MAAMAW-99), vol. 1647,   
Springer-Verlag: Heidelberg, Germany. 
 
Juan, T., Pierce, A., & Sterling, L.(2011). Roadmap: Extending the gaia 
methodology for  complex   open systems”, In Proceedings of 
the 1st ACM Joint Conference on   Autonomous  Agents and Multi-
Agent Systems (Bologna, Italy), ACM, New York. 
 
Juan, T., Sterling, L. and Winikoff, M.(2002).Assembling Agent-Oriented 
Software Engineering  Methodologies from Features”, in the Proceedings 
of the Third International  Workshop on Agent-Oriented Software 
Engineering, at AAMAS’02, Bologna,  Italy,  2002. 
 
Jefrey, M. (2011). An introduction to software agents. In Jefrey M. 
Bradshaw, editor, Software      Agents, pages 3{46. AAAI 
Press / The MIT Press, 2011. 
 
 
John, F. (2010). Multi-agent Systems: An Introduction to Distributed 
Artificial Intelligence.     Addison-Wesley. 
 
Kendall E.,(1996). Agent Roles and Role Models: New Abstractions for 
Multi-agent System    Analysis and Design”, Proceedings of the 
International  Workshop on   Intelligent  Agents in Information and 
Process   Management, Bremen,  Germany, 1998. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         916 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Kendall, E., Malkoun, M., and Jiang, C. (2010).A Methodology for 
Developing Agent Based   Systems”, In Distributed Artificial 
Intelligence   Architecture and Modeling,  LNAI   1087. Springer-
Verlag, Pages 85-99,  Germany. 
 
Khanh, H., & Michael W.(2010) . Comparing agent-oriented 
methodologies. In To appear at the       International Bi-Conference 
Workshop on Agent-Oriented Information Systems (AOIS-    
      2010), Melbourne, Australia. 
 
Kruchten, P.(2000).The Rational Unified Process: An Introduction. 
Addison-Wesley  Pub Co. 
 
Krupansky, J. (2010).Foundations of Software Agent Technology”, 
Agtivity: Advancing the   Science of Software Agent Technology. 
 
 
Kinny, T., Georgeff, B., & Rao, I.(1996). Desire: Modeling Multi-Agent 
Systems in a   Compositional Formal Framework,   Int.Journal of 
Cooperative  Information Systems,  Vol. 6. Special Issue on  
 FormalMethods in Cooperative  Information Systems:  Multi-
agent   Systems. 
 
Law,D., & Naem,A.(2013). Methods for Comparing Methods: 
Techniques in Software         Development. NCC 
Publications  
 
Lewis, R.(2014).Project Management. McGraw-Hill professional  
 
Lin, P., & Michael, W., (2011). Prometheus: A methodology for 
developing intelligent agents.         In Third International 
Workshop on Agent-Oriented Software Engineering, July 2011. 
 
Lin, P., & Michael, W., (2011). Prometheus: A pragmatic methodology 
for engineering      intelligent agents. In Proceedings of the OOPSLA 
2002 Workshop on Agent-Oriented     Methodologies, pages 
97{108, Seattle, November 2011. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         917 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Lin, P., & Michael, W., (2011). Prometheus: Engineering intelligent 
agents. Tutorial notes,    available from the authors, October 2011. 
 
Lin, P., & Winkoff,A., (2012). Prometheus: A brief summary. Technical 

note. 
 
Lin, P., & Michael W.(2012). Prometheus: A methodology for developing 
intelligent agents.   McGraw-Hill: New York. 
 
Lind, C., Erik, A., Steve J., Frank H., & Pascale, T. (2011). Empirical 
studies of object-  oriented artifacts, methods, and processes: State of 
the art and future directions. Empirical   Software Engineering. 
 

Maes, J.(2011). Understanding and Evaluating Methodologies: NIMSAD 
a Systematic       Framework. McGraw-Hill, New 
York, 2nd edition. 
 
Mark, W., & DeLoach.S. (2012). An overview of the multiagent systems 
engineering    methodology.  In The First International Workshop on 
Agent-Oriented Software   Engineering, Limerick, Ireland. 
 
 
Michael, P. (2012). Evaluation of object-oriented modeling languages: A 
comparison between   OML and UML. In Martin Schader and Axel 
Korthaus, editors, The Unified Modeling   Language Technical Aspects 
and Applications,. Physica-Verlag, Heidelberg. 
 

Mike, F. (2012). The Tropos software development methodology: 
Processes, Models and    Diagrams. In Third International Workshop 
on Agent-Oriented Software Engineering.   
 
Moulin, A.(1994). Multiagent systems engineering. International Journal 
of Software   Engineering and Knowledge Engineering. 
 
 
Nicholas, A., & Wooldridge, M.(2012). An Introduction to Multi-Agent 
Systems. John Wiley &   Sons, 2002. 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         918 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

Nwana, H. (2012). Software agents: An overview. Knowledge 

Engineering Review. Toronto 

Odell, S. (2012). Requirements of an object-oriented design method. 
Software Engineering   Journal, pages 102-113, March 2012. 
 
O'Malley, S.(2011). Determining when to use an agent-oriented software 
engineering   methodology. In Proceedings of the Second International 
Workshop On Agent-  Oriented Software Engineering (AOSE-2011). 
 
Omicini, J., Parunak H., & Bauer B. (2012). Representing Agent 
Interaction Protocols in UML.  The  First International Workshop 
on Agent-Oriented Software Engineering. 
 
Padgham, .J., & Winikoff, A. (2012). A cognitive foundation for 
comparing object-oriented  analysis methods. In J. F Nunamaker and 
IEEE Computer Society Press: R. H Sprague,  editors, 26th Hawaii 
International Conference on System Sciences. 
 
Padgham, J., & Michael, I.(2012). Agent Oriented Methodology; Addison 
Wesley. 
 
Parson, C., Jazayeri, M., Mandrioli, D.(2011): Fundamentals of Software 
Engineering.   PrenticeHall, Englewood Cliffs, N. J. ,pp.12,14. 
 
Pollack, B., Fausto, M., & Anna P. (2010). Troops: An agent-oriented 
software development    methodology. Technical Report DIT-02-
0015, University of Trento, Department of  Information and 
Communication Technology. 
 
Rao, A.(2010). A methodology and modeling technique for systems of 
BDI agents, In   Proceedings   of the Seventh European Workshop 
on Modelling Autonomous   Agents   in a  Multi- Agent World, 
LNAI Vol. 1038, Springer-Verlag, Berlin. 
 
Roel, W. (2011). A survey of structured and object-oriented software 
specification methods and   techniques. ACM Computing Surveys. 
 
Rumbaugh, E.(2011). A comparison of object-oriented methodologies. 
Technical report,   Object   Agency Inc. 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         919 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
Russel,M., & Norvig.(2011). Determining when to use an agent-oriented 
software engineering   methodology. McGraw-Hill, New York. 
 
 
Sabas,M., Badri,O., & Delisle,M.(2002). The Gaia methodology for 
agent-oriented   analysis and design. Autonomous Agents and 
Multi-Agent Systems. 
 

Scott, A.(2011). Specifying agent behavior as concurrent tasks: 
Designing the behavior of social   agents. In Proceedings of the Fifth 
Annual Conference on Autonomous Agents, Montreal  Canada. 
 
Scott, A. (2012). Applying agent oriented software engineering to 
cooperative robotics.  University of   Toronto, Department of Computer 
Science. 
 
Scott, A. (2012). Multi agent Systems Engineering. International Journal 
of Software   Engineering and Knowledge Engineering. 
 
Sharble, R., & Cohen,S.(2012). The object-oriented brewery: A 
comparison of two object    oriented development methods. SIGSOFT 
Software Engineering Notes. 
 

Sturm, A., & Shehory,O. (2003). Towards industrially applicable 
modeling technique for agent-    based systems (poster). In 
Proceedings of International Conference on Autonomous Agents    and 
Multi-Agent Systems, Bologna. 
 

Tambe, M., & Jennings, R.(2012). Applications of intelligent agents. 
Agent Technology:   Foundations, Applications, and Markets  
 
Trans,O., & Law,M.(2010). Understanding and Evaluating 
Methodologies: McGraw- Hill, New   York. 
 
Verharen, G., & Dignum, A. (2012). Agent-Object-Relationship 
Modeling. In Proc. of Second  International    Symposium - from 
Agent Theory to Agent Implementation together with  EMCRS 
2012,  April 2012. 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         920 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
Wagner, G., (2011). Agent-Oriented Analysis and Design of 
Organizational Information     Systems. In Proc. of Fourth IEEE 
International Baltic Workshop on Databases and    Information Systems, 
Vilnius (Lithuania), May 2011. 
 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         921 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 

  
  

.  

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         922 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 

 
 
 
 
 

 
. 
 

 
 
 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         923 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         924 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         925 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         926 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         927 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

  
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         928 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         929 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         930 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         931 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         932 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

  
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         933 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

  
 
 

IJSER

http://www.ijser.org/


 
 
 
International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018         934 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org  

 

  
 

IJSER

http://www.ijser.org/



